Лекция 12 Сети с расширенным вниманием и памятью
9.1. Введение
В сетях глубокого обучения, как мы видели в предыдущих главах, существуют хорошие архитектуры для обработки пространственных и временных данных с использованием различных форм сверточных и рекуррентных сетей, соответственно. Когда данные имеют определенные зависимости, такие как нестандартный доступ, долгосрочные зависимости, неупорядоченный доступ, большинство обсуждаемых стандартных архитектур не подходят. Давайте рассмотрим конкретный пример из набора данных bAbI, где представлены истории / факты, задан вопрос и необходимо вывести ответ из историй. Как показано на рис. 9.1, для поиска правильного ответа требуются неупорядоченный доступ и долгосрочные зависимости.
За последнее десятилетие архитектуры глубокого обучения добились значительного прогресса в использовании неявных знаний в качестве функций в различных задачах NLP. Многие задачи, такие как ответы на вопросы или резюмирование, требуют хранения явных знаний, потому что его можно использовать в своих задачах. Например, в наборе данных bAbI информация о Мэри, Сандре, Джоне, футбольном мяче и его местонахождении фиксируется для ответа на такой вопрос, как «где футбольный мяч?». Рекуррентные сети, такие как LSTM и GRU, не могут захватывать такую ​​информацию в очень длинных последовательностях. Механизмы внимания, сети с расширенной памятью и некоторые их комбинации в настоящее время являются лучшими методами, которые решают многие из проблем, обсуждаемых выше. В этой главе мы подробно обсудим многие популярные техники механизмов внимания и памяти сети, которые успешно используются в речи и тексте.
Хотя механизм внимания стал очень популярным в NLP и речи в последнее время после того, как Bahdanau et al. предложили свое исследование, ранее он в некоторых формах был представлен в нейронных архитектурах. Ларошель и Хинтон подчеркивают полезность «точек фиксации» для повышения производительности в задачах распознавания изображений [LH10]. 
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Рис. 9.1: Задача «вопрос-ответ»
 Денил и др. также предложили аналогичную модель внимания для отслеживания объекта и распознавания, вдохновленные моделями нейробиологии [Den + 12]. Weston et al. - пионер современных сетей с расширенной памятью, но истоки их восходят к ранним 1960-м годам Штейнбух и Писке [SP63]. Das et al. использовали автомат выталкивания нейронной сети (NNPDA) с внешней стековой памятью для решения проблем повторяющихся сетей при изучении контекстно-свободных грамматик [DGS92]. Мозер в своем произведении обращается к сложным временным рядам, которые имели две отдельные части в архитектурах: (а) кратковременная память для фиксации прошлых событий и (б) ассоциатор для использования кратковременной памяти для классификации или прогнозирования [Moz94].
9.2. Механизм внимания
В более общем плане внимание - это концепция, очень хорошо известная в психологии человека, где люди, которые ограничены узкими местами обработки, избирательно сосредотачиваются на определенной части информации и игнорируют остальную видимую информацию. Сопоставляя ту же концепцию психологии человека с данными последовательности, такими как текстовые потоки или аудиопотоки, когда мы фокусируемся на определенных частях последовательностей или областей и размываем остальные во время обучения, этот процесс называется механизмом внимания. Внимание было введено в гл. 7, представляя повторяющиеся сети и моделирование последовательности. Поскольку многие методы, использующие внимание, связаны или используются в сетях с расширенной памятью, мы рассмотрим некоторые из современных методов, которые имеют широкое применение.
9.2.1. Механизм потребности во внимании
Давайте рассмотрим перевод с английского на французский предложения «Я люблю кофе», которое на французском языке означает «J’aime le cafe». Мы будем использовать вариант использования машинного перевода с моделями от последовательности к последовательности, чтобы подчеркнуть необходимость в механизме внимания. Давайте рассмотрим простую RNN с сетью кодер-декодер, как показано на Рис. 9.2. В приведенном выше нейронном машинном переводе мы видим, что все предложение сжимается в единственное представление, заданное скрытым вектором s4, который представляет собой представление всего предложения, и используется последовательностью декодера в качестве входных данных для перевода.
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Рис. 9.2: Кодер – декодер, использующий RNN для нейронного машинного перевода 
По мере увеличения длины входной последовательности кодирование всей информации в этом единственном векторе становится невозможным. Последовательность ввода в тексте обычно имеет сложную фразовую структуру и отношения между словами на большом расстоянии, которые кажутся сжатыми в одном векторе в конце. Кроме того, в действительности все скрытые значения из сети кодера несут информацию, которая может влиять на вывод декодера на любом временном шаге. Если не использовать все скрытые выходы, а только один, их влияние может быть ослаблено в процессе. Наконец, на каждый выход декодера каждый из входов может влиять по-разному, и это может происходить не в том же порядке, что и во входной последовательности.
9.2.2. Мягкое внимание
В этом разделе мы представим механизм внимания как способ преодоления проблем с повторяющимися сетями. Мы начнем с механизма внимания Луонга и др. который носит более общий характер, а затем описывает, чем он отличается от оригинального Bahdanau et al. статья, посвященная вниманию [LPM15, BCB14b].
Механизм внимания имеет в кодировщике и декодере следующее: (Рис. 9.3)
· Исходная последовательность, длина которой равна x = {x1, x2, ..., xn}.
· Целевая последовательность длиной m, заданная как y = {y1, y2, ..., ym}.
· Скрытые состояния энкодера s1, s2, ..., sn.
· Последовательность декодера имеет скрытое состояние, заданное hi для выхода при i = 1,2, ..., m.
· Вектор контекста ci на стороне источника в позиции i является средневзвешенным значением предыдущего состояния и вектор выравнивания ai:
ci = ∑jai,j sj                                                                                       (9.1)
· Баллы выравнивания рассчитываются по:
ai = align(hi,sj)                                                                               (9.2)
    = softmax(score(hi,sj))                                                               (9.3)

ai,j называются весами выравнивания. Приведенное выше уравнение показывает, как каждый входной элемент может влиять на выходной элемент в заданной позиции. Предварительно заданная оценка функции называется функцией оценки внимания, и существует множество ее вариантов, которые будут определены в следующем разделе.
· Вектор контекста ci на стороне источника и скрытое состояние hi объединяются с использованием конкатенации [ci; hi] и нелинейной операции tanh, чтобы дать скрытый вектор внимания h˜i:
h˜i = tanh (Wc [ci; hi])                                                                        (9.4)
где веса Wc изучаются в процессе тренировки.
· Вектор скрытого внимания h˜i передается через функцию softmax, чтобы сгенерировать распределение вероятностей, задаваемое следующим образом:
P (yi | y < i, x) = softmax (Wsh˜i)                                                       (9.5)
- Bahdanau et al. используют двунаправленные слои LSTM в кодировщиках и объединяют скрытые состояния.
- Bahdanau et al. используют предыдущее состояние, т.е. hi −1, и путь вычислений будет hi−1 → ai → ci → h˜i по сравнению с Luong et al. который имеет
hi → ai → ci → h˜i.
- Bahdanau et al. используют линейную комбинацию предыдущего состояния и состояний кодировщика в функции оценки, заданной оценкой 
(sj, hi) = vТtanh (Wasj + Uahi).
- Луонг и др. имеют механизм подачи-ввода, в котором скрытые векторы внимания h˜i сцепляются с целевым вводом.
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Рис. 9.3: Пошаговый процесс вычисления мягкого внимания в сети кодер-декодер
9.2.3. Внимание, основанное на оценках
В таблице 9.1 приведены различные способы вычисления функций оценки внимания для придания различного вида внимания.
· Функции мультипликативной и аддитивной оценки обычно дают аналогичные результаты, но функции мультипликативной оценки быстрее как в вычислениях, так и в экономии места за счет эффективных методов умножения матриц.
Таблица 9.1: Сводная оценка внимания
	Название оценки внимания
	Описание оценки внимания
	Параметры
	Ссылки

	Concat (аддитивный)
	score (sj, hi) = vT tanh (Wа [sj; hi])
	обучение Wа и vа
	[LPM15]

	Линейный (аддитивный)
	score (sj, hi) =vT tanh (Wa [sj + Uahi)
	vа, Uа и Wа обучаемый
	[BCB14b]

	Билинейная (мультипликативная)
	оценка (sj, hi) = hiT Wаsj
	Wа обучаемый
	[LPM15]

	Точечный (мультипликативный)
	score (sj, hi) = hiT sj
	Без параметров
	[LPM15]

	Масштабируемая точка (мультипликативная)
	оценка (sj, hi) = hiTsj/√n
	Нет параметров
	[Vas + 17c]

	Оценка на основе местоположения
	(sj, hi) = softmax (WahTi)
	Wa обучаемый
	[LPM15]



· Дополнительное внимание работает намного лучше, когда размер ввода большой.
Метод масштабированного скалярного произведения, определенный выше, был использован для смягчения этой проблемы в общем скалярном произведении.
9.2.4. Мягкое и жесткое внимание
Единственная разница между мягким вниманием и жестким вниманием заключается в том, что при жестком внимании выбирается одно из состояний кодировщика, а не средневзвешенное значение по всем входам, как при мягком внимании. Пристальное внимание уделяется:
ci = argmaxai,j{s1, s2, ..., sn}                                                             (9.6)
Таким образом, разница между пристальным вниманием и мягким вниманием основана на поиске, когда вычисляется контекст.
Жесткое внимание использует функцию argmax, которая не является непрерывной функцией, не дифференцируемой и, следовательно, не может использоваться в стандартных методах обратного распространения ошибки. Такие методы, как обучение с подкреплением для выбора дискретной части и выборка на основе Монте-Карло. Другой способ - использовать гауссовский трюк, описанный в следующем разделе.
9.2.5. Локальное и глобальное внимание
Методы мягкого внимания, такие как исследование Богданау, также называют глобальным вниманием, поскольку каждое состояние декодера принимает «все» входные данные кодера при вычислении вектора контекста. Процесс перебора всех входных данных может быть дорогостоящим с вычислительной точки зрения и во много раз непрактичным при большой длине последовательности.
Луонг и др. представили местное внимание, которое представляет собой комбинацию мягкого внимания и жесткого внимания для преодоления этих проблем [Luo + 15]. Один из способов добиться локального внимания - использовать небольшое окно скрытых состояний кодировщика для вычисления контекста. Это называется прогнозирующим выравниванием, и оно восстанавливает дифференцируемость.
В любом состоянии декодера в течение времени i сеть генерирует выровненную позицию pi и окно размера D по обе стороны от скрытого состояния позиции, то есть [pi -D, pi + D] используется для вычисления контекста вектор c. Позиция pi - это скаляр, вычисленный с использованием сигмоидной функции на текущем скрытом состоянии hi декодера и с использованием длины предложения S, определяемая по формуле:
pt = S · sigmoid (vTp tanh (Wphi))                                                 (9.7)
где Wp и vp - параметры модели, которые необходимо изучить для прогнозирования положения, S - длина последовательности, а pi ∈ [0, S]. Сложность состоит в том, как сфокусироваться на местоположении pi без использования недифференцируемого argmax. Один из способов сфокусировать выравнивание около числа pi, гауссово распределение сосредоточено вокруг числа pi со стандартным отклонением σ = D/2 предоставлено:
ai = align (sj, hi) exp( - (s− pt)2/2σ2)                                              (9.8)
Схема представлена ​​на рис. 9.4.
9.2.6. Собственное внимание
Lin et al. представил концепцию самовнимания или внутреннего внимания, в котором предпосылка состоит в том, что, позволяя предложению сосредоточиться на самом себе, можно выделить многие важные аспекты [Lin + 17]. Дополнительное внимание используется для вычисления оценки каждого скрытого состояния hi:
score(hi) = va tanh(Wahi)                                                                 (9.9)
Затем, используя все скрытые состояния H = {h1, ..., hn}, вектор внимания a:
a = softmax (va tanh (WaHT))                                                          (9.10)
где Wa и va - весовые матрицы и векторы, полученные на обучающих данных. Последний вектор предложения c вычисляется следующим образом:
с = HaT                                                                                             (9,11)
Вместо того, чтобы просто использовать один вектор va, несколько скачков внимания выполняются с использованием матрицы V, которая фиксирует множественные отношения, существующие в предложениях, и позволяет нам извлечь матрицу внимания A как:
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Рис. 9.4: Пошаговый процесс вычисления локального внимания в сети кодировщика-декодера
A = softmax (Va tanh(WaHT))                                                    (9.12)
С = АН                                                                                       (9.13)
Чтобы поощрять разнообразие и наказывать избыточность векторов внимания, мы используем следующее ограничение ортогональности в качестве метода регуляризации:
Ω = | (AAT −I) |2F                                                                        (9.14)
9.2.7. Внимание к ключевым словам
Ключевые ценности внимания Данилюка и др. - еще один вариант, который разделяет скрытый слой на ключ-значение, где ключи используются для распределения внимания, а значения - для представления контекста [Dan + 17]. Скрытый вектор hj разбивается на ключ kj и значение vj: [kj; vj] = hj. Вектор внимания ai длины L определяется выражением:
ai = softmax (va tanh (W1 [ki−L; ···; ki−1] + W2IT))                        (9.15)
где va, W1, W2 - параметры. Тогда контекст представлен как:
ci = [vi−L; ···; vi−1] aT                                                                     (9.16)
9.2.8. Многоголовое самовнимание
Vaswani et al. в своей работе предлагают трансформаторную сеть с использованием многоголового самовосприятия без каких-либо повторяющихся сетей для достижения современных результатов в машинном переводе [Vas + 17c]. Мы опишем самовнимание с несколькими головами поэтапно в этом разделе, как показано на рис. 9.5. 
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Рис. 9.5: Входные данные пошаговых вычислений с самовниманием 
Источник с несколькими головками со словами word1, word2, ..., wordn сначала отображаются на слой внедрения, чтобы получить векторы для слов x1, x2, ... , xn. Есть три матрицы WQ, WK и WV, называемые матрицами весов запросов, ключей и значений, которые обучаются во время процесса обучения.
 Векторы внедрения слов умножаются на матрицы WQ, WK и WV, чтобы получить векторы запроса, ключа и значения, соответственно, для каждого слова, заданного q, k и v. Затем необходимо вычислить оценку для каждого слова для каждого другого слова в предложении, используя скалярное произведение этого вектора запроса q и ключевых векторов k для каждого слова. Эта оценка фиксирует одно взаимодействие слова с каждым другим словом. Например, для первого слова:
score1 = q1k1 + q2k2 + ··· + qnkn
Затем это значение делится на длину ключевого вектора √dk, и вычисляется softmax для получения весов от 0 до 1. Эта оценка затем умножается на все векторы значений для получения векторов взвешенных значений. Это привлекает внимание к конкретным словам в предложении, а не к каждому слову. Затем векторы значений суммируются, чтобы вычислить выходной вектор внимания, заданный для этого слова:
z1 = score1v1 + score1v2 + ··· + score1vn
Теперь, вместо этого пошагового вычисления, все это можно вычислить, взяв представление предложения как матрицу вложения всех векторов слов X и умножив его на соответствующие весовые матрицы WQ, WK и WV, чтобы получить матрицы для всех слов как Q, K и V, а затем используя уравнение для вычисления внимания:
attention (Q, K, V) = Z = softmax ((QKT)/√dk) V                        (9.17)
Вместо того, чтобы использовать только одно внимание, как вычислено выше, они используют внимание с несколькими головами, где есть много таких матриц внимания, вычисляемых для входных данных, и могут быть представлены как Z0, Z1, ..., Zm. Эти матрицы объединяются и умножаются на другую матрицу весов WZ, чтобы получить окончательное внимание Z.
9.2.9. Иерархическое внимание
Ян и др. использовал иерархическое внимание для задач классификации документов, показывая преимущество наличия механизмов внимания на уровне предложения для контекста и на уровне слова для важности [Yan + 16]. Как показано на рис. 9.6, общая идея состоит в том, чтобы иметь иерархическое кодирование на уровне слов с использованием двунаправленных групп GRU, внимания на уровне слов, кодирования на уровне предложения и внимания на уровне предложения. Мы кратко объясним каждый из этих компонентов.
Давайте рассмотрим ввод как набор документов, каждый документ имеет максимум L предложений, а каждое предложение имеет максимум T слов, так что wit представляет t-е слово в i-м предложении в документе. Предложения со всеми словами проходят через матрицу вложения We, которая преобразует их в вектор xij = Wewij. Затем он проходит через двунаправленное GRU как:
xit = Wewit, t ∈ [1, T]                                                                   (9.18)
hFit = GRUF (xit), t ∈ [1, T]                                                          (9.19)
hRit = GRUR (xit), t ∈ [T, 1]                                                         (9.20)
Скрытое состояние слова wit получается путем конкатенации двух векторов, указанных выше hit = [hFit; hRit], таким образом суммируя всю информацию вокруг него.
Обращение к словарной аннотации сначала подается в однослойный MLP, чтобы получить скрытое представление uit, которое затем используется для измерения важности с помощью вектора контекста уровня слова uw, получения нормализованной важности с помощью softmax и использования этого для вычисления предложения вектор si с взвешенной суммой аннотаций и весов. Вектор контекста uw инициализируется случайным образом, а затем изучается в процессе обучения. Интуиция, лежащая в основе вектора контекста uw, по мнению авторов, заключается в том, что он улавливает фиксированный запрос, например, «какое информационное слово» в предложении.
uit = tanh (Wwhit + bw)                                                                      (9.21)
где Ww, bw - параметры, полученные в процессе обучения.
αit = ехр (uitTuw) / ∑t ехр (uitTuw)                                                     (9.22)
si = ∑t αithit                                                                                        (9.23)
Учитывая L вектора предложения si, скрытые векторы документа вычисляются аналогично векторам слов с использованием двунаправленных групп GRU.
hFi = GRUF (si), i ∈ [1, L]                                                                 (9.24)
hRi = GRUR (si), i ∈ [L, 1]                                                                (9.25)
Подобно аннотациям слов, конкатенация обоих векторов захватывает все обобщения в предложениях с обоих направлений, заданных как hi = [hFi; hRi]. Вектор контекста предложения us используется аналогично вектору контекста слова uw для привлечения внимания среди предложений для получения вектора документа v:
ui = tanh (Wshi + bs)                                                                      (9.26)
где Ws, bs - параметры, полученные в процессе обучения.
αi = ехр (uiT us) / ∑i exp (uTi us)                                                   (9.27)
v = ∑i αihi                                                                                     (9.28)
Вектор документа v проходит softmax для классификации, а отрицательная логарифмическая вероятность метки для предсказания используется для обучения.
На практике, если есть задача классификации документов, иерархическое внимание становится хорошим выбором по сравнению с другими механизмами внимания или даже другими методами классификации. Это помогает находить как важные ключевые слова в предложениях, так и важные предложения в документе в процессе обучения.
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Рис. 9.6: Иерархическое внимание, используемое при классификации документов


9.2.10. Применение механизма внимания в тексте и речи
Многие исследования NLP и NLU использовали механизмы внимания для таких задач, как внедрение предложений, языковое моделирование, машинный перевод, синтаксический анализ, классификация документов, классификация настроений, реферирование и диалоговые системы, которые некоторые из них мы можем назвать. Самовнимание Лин и др. c использованием LSTM для встраивания предложений показали значительные улучшения по сравнению с другими встраиваниями в различных таких задачах, как классификация настроений и текстовое следствие [Lin + 17]. Данилюк и др. применили механизмы внимания к языковому моделированию и показали сопоставимые результаты с сетями с расширенной памятью [Dan + 17]. Реализации нейронного машинного перевода, обсуждаемые в этой главе, достигли самых современных результатов [BCB14b, LPM15, Vas + 17c]. Vinyals et al. показали, что механизмы внимания для составляющих синтаксического анализа могут не только достигать самых современных результатов, но также улучшать скорость [Vin + 15a]. Исследование Янга и др. Показало, что использование иерархического внимания может значительно превзойти многие сети на основе CNN и LSTM [Yan + 16]. Wang et al. показали, что LSTM на основе внимания может достигать самых современных результатов в классификации настроений на уровне аспектов [Wan + 16b]. Раш и др. показали, как методы локального внимания могут существенно улучшить задачу реферирования текста [RCW15].
Chorowski et al. представил, как механизмы внимания могут достичь лучшей нормализации для более плавного выравнивания и использования предыдущих выравниваний для создания функций в распознавании речи [Cho + 15b]. Bahdanau et al. использовали сквозные сети на основе внимания для задач распознавания речи с большим словарным запасом [Bah + 16b]. Было показано, что модель, основанная на внимании, «Слушай, слушай и произноси» (LAS) превосходит подход «последовательность-последовательность» [Cha + 16a]. Чжан и др. в своем исследовании показали, как использование механизмов внимания со сверточными сетями может достичь самых современных результатов в проблеме распознавания речевых эмоций [Zha + 18].
9.3. Сети с расширенной памятью
Далее мы опишем некоторые хорошо известные сети с расширенной памятью, которые оказались очень эффективными в исследованиях NLP и речи.


9.3.1. Сети памяти
Сети памяти (MemNN) Вестона и др. были мотивированы способностью хранить информацию, полученную из историй или фактов из базы знаний, чтобы можно было легко ответить на различные вопросы, относящиеся к ним [WCB14]. Сети памяти были расширены многими способами для различных других приложений, но выполняли вопросы и ответы на рассказы или факты можно считать его основным приложением, которое мы сосредоточим на нашем повествовании.
Сети памяти состоят из памяти m, индексированной mi, и состоят из четырех компонентов, как показано на рис. 9.7.
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Рис. 9.7: Сети памяти
1. Входная карта объектов I. Этот компонент преобразует входящие данные во внутреннее представление объектов. Этот компонент может выполнять любую предварительную обработку для конкретной задачи, такую ​​как преобразование текста во вложения или представления POS, и это лишь некоторые из них. Учитывая входной x, цель состоит в том, чтобы преобразовать во внутреннее представление объекта I (x).
2. Обобщение G: этот компонент использует представление ввода сверху и обновляет память, используя любое преобразование, если это необходимо. Преобразование может быть таким простым, как использование представления как есть или разрешение кореферентности, до сложных рассуждений, основанных на задачах. Это преобразование задается:
mH (x) = I (x)                                                                                     (9.29)
Как правило, обновление памяти mi для нового ввода задается функцией H(·), которая является общей функцией, которую можно использовать для выполнения различных задач, от самых простых, таких как поиск индекса слота в памяти до сложной части поиска слот, если он заполнен или забыл определенный слот памяти. Как только индекс слота обнаружен, G сохраняет вход I (x) в этом месте:
mi = G (mi, I (x), m) ∀i                                                                 (9.30)
3. Выход O: это часть «чтения» из памяти, где происходит необходимый вывод для вывода соответствующих частей памяти для генерации ответа. Это можно представить, как вычисление выходных характеристик с учетом нового входа и памяти как o = O (I (x), m).
4. Ответ R: этот компонент преобразует вывод из памяти в представление, понятное внешнему миру. Декодирование выходных характеристик для получения окончательного ответа может быть дано как r = R (o).
В документе компонент ввода сохраняет предложения как есть, как для историй, так и для вопросов. Запись в память или обобщение также является базовой записью в следующий слот, т.е. mN = x, N = N + 1. Большая часть работы выполняется в выходной O, R части сети.
Модуль вывода находит наиболее близкое совпадение для ввода, используя k памятей, которые поддерживают факт и функцию оценки.
ок = argmaxi = 1, ..., n sO (x, mi)                                                          (9.31)
SO - это функция оценки, которая сопоставляет входной вопрос или входной факт / предложение со всеми существующими ячейками памяти для наилучшего соответствия. В простейшем случае они выбирают k = 2 для вывода. Это можно представить, как:
o1 = O1 (x, m) = argmaxi = 1, ..., N sO (x, mi)                                       (9.32)
o2 = O2 (x, m) = argmaxi = 1, ..., N sO ([x, mO1], mi)                            (9.33)
Вход [x, mO1, mO2] передается компоненту ответа, который генерирует одно слово с наивысшим ранжированием, определяемым следующим образом:
r = argmaxw∈W sR ([x, mO1, mO2], w)                                               (9.34)
где W - это набор всех слов в словаре, а sR - функция оценки для сопоставления слов с входными данными. В статье оценочные функции sO и sR имеют одинаковый вид и могут быть записаны как:
s (x, y) = φx (x)TUTUφy (y)                                                             (9.35)
Матрица U имеет размерность n × D, где n - размер вложения, а D - количество функций. Матрицы φx, φy представляют собой отображение исходного текста в D-мерное пространство признаков. Пространство признаков, выбранное в статье, представляло собой набор слов над словарём W и D = 3 | W | как для sO, так и для sR, т.е. каждое слово имеет три представления: одно для φy (·) и два для φx (·) в зависимости от того, находится ли слово на входе или во вспомогательной памяти, и их можно моделировать отдельно. Параметры U как в o, так и в r разделены и обучаются с использованием функции предельных потерь, определяемой следующим образом:
∑f~=/mO1 max (0, γ - sO (x, mO1) + so (x, f~)) + 
∑ f’~ =/ mO2 max (0, γ - sO ([x, mO1], mO2 ) + sO ([x, mO1], f~)) + 
∑r~ =/ r max (0, γ - sR ([x, mO1, mO2], r) + sR ([x, mO1, mO2] , r~))         (9.36)

где f~, f’~, r~ - другие варианты выбора, кроме истинной метки, т. е. добавляет потерю запаса, если оценка неправильных вариантов больше, чем основная истина минус γ.
Функция оценки o1 и o2, приведенная в уравнениях. 9.32 и 9.33 могут быть дорогостоящими в вычислительном отношении при большом объеме памяти. В статье используется несколько приемов, таких как хеширование слов и кластеризация вложений слов в кластер k. Подход кластеризации дает хороший компромисс между скоростью и точностью при выборе размера кластера k.
Давайте возьмем простой пример с двумя вспомогательными наборами данных из bAbI, которые уже находятся в слотах памяти, приведенных в таблице ниже.
слот памяти (mi)
1. Мэри перешла в ванную.
2. Сандра отправилась в спальню.
3. Джон пошел на кухню.
4. Мэри достала там футбольный мяч.
5. Мэри вернулась на кухню.
6. Мария вернулась в сад.
Когда спрашивается «Где находится футбольный мяч?", ввод после прохождения k = 2, x = «Где футбольный мяч?» соответствует всему, что есть в памяти, и слот mO1 = «Мэри достала футбольный мяч» и, используя это, то есть [x, mO1], он выполнит еще один поиск подобия и найдет mO2 = «Мэри вернулась в сад», что дает начало к новому выходу [x, mO1, mO2].
Компонент R использует вход [x, mO1, mO2] для генерации выходного отклика r = «сад».
9.3.2. Сквозные сети памяти
Чтобы преодолеть проблемы сетей памяти, такие как необходимость обучения каждого компонента под наблюдением, проблемы тренировки повышенного внимания и др., Сухбаатар и др. предложил сквозные сети памяти или MemN2N. MemN2N преодолевает многие недостатки MemNN за счет мягкого внимания при чтении из памяти, выполнения множественных поисков или скачков в памяти и сквозного обучения с обратным распространением с минимальным контролем [Suk + 15].
9.3.2.1. Однослойный MemN2N
MemN2N имеет три входа; (a) рассказ / факты / предложения x1, x2, ..., xn, (b) за вопрос / вопрос q и (c) ответ / метка a. Далее мы рассмотрим различные компоненты и взаимодействия архитектуры MemN2N, рассматривая только один уровень памяти и контроллер.
9.3.2.2. Ввод и запрос
Входные предложения, например, xi - это i-е предложение со словами wij, заданными как xi = xi1, xi2, ..., xin, преобразуются в представление памяти m1, m2, ..., mn размерности d с использованием матрица вложения A размерности d × | V |, где | V | размер словарного запаса. Операция определяется:
mi = ∑j Axij                                                                                   (9.37)
В статье обсуждаются различные способы объединения вложений слов для всех слов в предложении, например, выполняя операцию суммирования для всех вложений слов, чтобы получить вложение предложения. Точно так же запрос или вопросительное предложение отображается в вектор размерности d с использованием матрицы вложения B размерности d × | V |.
9.3.2.3. Контроллер и память
Представление запроса u из матрицы внедрения B для контроллера затем сопоставляется с каждым индексом памяти mi с использованием скалярного произведения для сходства и softmax для выбора состояния. Операция может быть дана:
pi = exp (uT mi) / ∑j exp (uT mj)                                                  (9.38)
9.3.2.4. Контроллер и выход
Каждое входное предложение xi также отображается на контроллер как векторы ci размерности d с использованием третьей матрицы вложения C размерности d × | V |. Затем выходные данные комбинируются с использованием выходов softmax pi и вектора ci как:
o = ∑i pici                                                                                 (9.39)
9.3.2.5. Окончательное прогнозирование и обучение
Выходной вектор o и входной запрос с вложениями u объединяются и затем передаются через окончательную матрицу весов W и softmax для создания метки:
aˆ = exp (W (o + u)) / ∑j exp (W (o + u))                               (9.40)
Истинная метка a и предсказанная метка â используются для обучения сетей, включая вложения A, B, C и W, с использованием кросс-энтропийных потерь и стохастического градиентного спуска. Однослойный MemN2N с полным потоком входных предложений, запросов и ответов показан на рис. 9.8.
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Рис. 9.8: Однослойный MemN2N
9.3.2.6. Несколько слоев
Затем однослойный MemN2N расширяется до нескольких уровней, как показано на рис. 9.9, следующим образом:
· Каждый уровень имеет свою собственную матрицу встраивания памяти A для ввода и матрицу встраивания контроллера / выхода C.
· Каждый вход слоя K + 1 объединяет выход текущего слоя ok и его вход uk, используя:
uk + 1 = ok + uk                                                                               (9.41)
· Верхний уровень использует вывод с функцией softmax аналогичным образом для создания метки â.
· Окончательный результат ˆa аналогично сравнивается с фактической меткой a, и вся сеть обучается с использованием кросс-энтропийных потерь и стохастического градиентного спуска.
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Рис. 9.9: Многослойный MemN2N
Поскольку многие задачи, такие как QA, требуют временного контекста, т. е. Сущность была в каком-то месте перед переходом в другое место, в статье модифицируется вектор памяти для кодирования временного контекста с использованием временной матрицы. Например, отображение входной памяти можно записать как:
mi = ∑j Axij + TA (i)                                                                    (9.42)
где T (i) - i-я строка временной матрицы T.
9.3.3. Нейронные машины Тьюринга
Graves et al. предложили сеть с расширенной памятью, называемую нейронными машинами Тьюринга (NTM), для выполнения сложных задач, которые повторялись и требовали информации в течение более длительных периодов времени [GWD14b]. Как показано на рис. 9.10, в нем есть компонент нейронной сети, называемый контроллером, который взаимодействует с внешним миром и внутренней памятью для всех своих операций. Вдохновленный машинами Тьюринга, контроллер взаимодействует с памятью с помощью головок чтения и головок записи. Поскольку чтение или запись в память можно рассматривать как дискретные и прерывистые операции, их нельзя различить, и, следовательно, большинство алгоритмов на основе градиента не могут использоваться как есть.
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Рис. 9.10: Нейронные машины Тьюринга
Одной из наиболее важных концепций, представленных в исследовании, было преодоление этой проблемы с помощью размытых операций как при чтении, так и при записи, которые в разной степени взаимодействуют со всеми элементами памяти. Используя эти размытые операции, все операции чтения и записи могут быть непрерывными, дифференцируемыми и эффективно изучаться с использованием алгоритмов на основе градиента, таких как стохастический градиентный спуск.
Давайте рассмотрим память M как двумерную матрицу (N × M) с N строками, соответствующими памяти, и M столбцами для каждой строки, в которой сохраняются значения.
Далее мы обсудим различные операции в NTM.

9.3.3.1. Операции чтения
Внимание используется для перемещения головок чтения (и записи) в NTM. Механизм внимания может быть записан как нормализованный весовой вектор wt длины N, считывающий содержимое из памяти Mt в заданный момент времени t. Отдельные элементы этого вектора весов будем называть wt (i).
Ограничения на весовые векторы:
∀i ∈ {1 ... N} 0 ≤ wt (i) ≤ 1                                                           (9.43)
∑Ni = 1 wt(i) = 1                                                                               (9.44)
Считывающая головка вернет вектор чтения M-длины rt, который представляет собой линейную комбинацию строк памяти, масштабированных вектором веса, как задано:
rt ← ∑Mi =1 wt (i) Mt (i)                                                                   (9.45)
Поскольку приведенное выше уравнение является дифференцируемым, вся операция чтения дифференцируема.
9.3.3.2. Операции записи
Запись в NTM можно рассматривать как два отдельных шага: стирание содержимого памяти и последующее добавление нового содержимого. Операция стирания выполняется с помощью вектора стирания M-длины et в дополнение к вектору веса wt, чтобы указать, какие элементы в строке должны быть полностью стерты, оставлены без изменений или выполнены некоторые изменения. Таким образом, весовой вектор wt дает нам строку для обслуживания, а вектор стирания et стирает элементы в этой строке с обновлением:
Merasedt (i) ← Mt−1 (i) [1 − wt (i) et]                                                 (9.46)
После состояния стирания, т. е. Mt-1 преобразован в Merasedt, записывающая головка использует вектор сложения M-длины at для завершения записи, как указано в:
Mt(i) ← Merasedt (i) +wt(i)at                                                            (9.47)
Поскольку операции стирания и записи дифференцируемы, вся операция записи дифференцируема.
9.3.3.3. Механизм адресации
Веса, используемые при чтении и записи, вычисляются на основе двух механизмов адресации: (а) адресация на основе содержимого и (б) адресация на основе местоположения.
Идея адресации на основе содержимого состоит в том, чтобы взять информацию, сгенерированную контроллером, даже если она является частичной, и найти точное совпадение в памяти. В некоторых задачах, особенно в операциях с переменными, обязательно можно найти расположение переменных для таких задач, как итерации и переходы. В таких случаях на основе адресация местоположения очень полезна.
Веса вычисляются на разных этапах и передаются на следующий этап.
Мы рассмотрим каждый шаг в процессе вычисления весов, как показано на рис. 9.11. 
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Рис. 9.11: Этапы адресации NTM
Первый этап, известный как адресация содержимого, принимает два входа: ключевой вектор kt длины-M и скалярную силу ключа βt. Ключевой вектор kt сравнивается с каждым вектором Mt(i) с использованием меры подобия K [·, ·]. Ключевая сила, βt, акцентирует внимание на определенных терминах или принижает их. Адресация на основе содержимого производит вывод wct по формуле:
wct = exp (βtK [kt, Mt (i)]) / ∑j exp (βtK [kt, Mt (j)])                     (9.48)
Адресация на основе местоположения выполняется на следующих трех этапах. Второй этап, называемый интерполяцией gt ∈ (0,1), принимает скалярный параметр из головки контроллера, который используется для объединения веса содержимого из предыдущего шага wct и вектора весов предыдущего временного шага wt-1 для генерации стробированного взвешивания wgt предоставлено:
wgt ← gtwct + (1 − gt) wt−1                                                             (9.49)
Следующим этапом является сверточный сдвиг, который позволяет переключить внимание на другие строки. Он принимает вектор сдвига st от контроллера в качестве входных данных и предыдущий интерполированный выход wgt. Вектор сдвига может иметь различные значения, такие как +1, чтобы сдвинуть вперед на одну строку, 0, чтобы остаться как есть, и -1, чтобы сдвинуть назад на одну строку. Операция представляет собой сдвиг по модулю N, так что сдвиг внимания снизу перемещает голову вверх и наоборот. Сдвиг свертки задается как w˜t, а операция:
w˜t (i) ← ∑N−1j = 0 wgt(j) st (i− j)                                                      (9.50)
Заключительный этап - повышение резкости, которое предотвращает размытие смещенных весов предыдущей свертки с использованием другого параметра γ ≥ 1 из головки контроллера. Окончательный результат весового вектора wt определяется как:
wt (i) ← w˜t (i) γt∑j w˜γtt (j)                                                            (9.51)
Таким образом, адрес чтения и записи вычисляется с помощью вышеуказанных операций, и все части дифференцируются и, следовательно, могут быть изучены с помощью алгоритмов на основе градиента. Контроллерная сеть имеет множество вариантов, таких как тип нейронной сети, количество считывающих головок, количество записывающих головок и т. д. В документе для контроллера использовалась рекуррентная нейронная сеть с прямой связью и LSTM.
9.3.4. Дифференцируемый нейронный компьютер
Graves et al. предложил дифференцируемый нейронный компьютер (DNC) в качестве расширения и улучшения нейронных машин Тьюринга [Gra + 16]. Он следует той же высокоуровневой архитектуре контроллера с несколькими головками чтения и одной головкой записи, влияющими на память, как показано на рис. 9.12. В этом разделе мы опишем изменения, которые DNC вносит в NTM.
9.3.4.1. Входы и выходы
Контроллерная сеть получает входной вектор xt ∈ RX на каждом временном шаге и генерирует выходной yt ∈ RY. Он также принимает в качестве входных данных R векторов чтения предыдущего временного шага как r1t-1, ..., rRt-1 из матрицы памяти Mt-1 ∈ RN × W через считывающие головки. Векторы ввода и чтения объединяются как один вход контроллера xcont = [xt; r1t−1, ..., rRt−1]. Контроллер использует нейронную сеть, такую ​​как LSTM.
9.3.4.2. Чтение и запись в память
Выбор местоположения происходит с использованием неотрицательных весовых векторов, сумма которых равна 1. Полный набор «разрешенных» весов по N ячейкам в памяти задается неотрицательным ортантом и ограничениями как:
ΔN = {α ∈ RN | αi ∈ [0,1], ∑Ni = 1αi ≤ 1}                                           (9.52)
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Рис. 9.12: Схема адресации DNC
Операция чтения выполняется с использованием R весов чтения {wr,1t, ..., wr,Rt} ∈ ΔN, таким образом, давая векторы чтения {r1t, ..., rRt} уравнением:
rit = MtTwr,it                                                                             (9.53)
Векторы чтения добавляются ко входу контроллера на следующем временном шаге.
Операция записи выполняется путем взвешивания записи wwt ∈ RN вместе с вектором записи vt ∈ RW и вектором стирания et ∈ [0,1]W оба излучаются контроллером для изменения памяти как:
Mt = Mt−1 ◦ (E − wwt etT) + wwt vTt                                          (9,54)
где ◦ представляет собой поэлементное умножение, а E - матрица единиц N×M.
9.3.4.3. Выборочное внимание
Весовые коэффициенты выходов контроллера параметризованы по строкам памяти с помощью трех форм механизмов внимания: на основе содержимого, распределения памяти и временного порядка. Контроллер выполняет интерполяцию между этими тремя механизмами с помощью скалярных вентилей.
Подобно NTM, избирательное внимание использует частичный ключевой вектор kt длины-W и скалярную силу ключа βt. Ключевой вектор kt сравнивается с каждым вектором Mt [i] с использованием меры подобия K [·, ·], чтобы найти ближайший к ключу, обычно с использованием косинусного подобия, как задано:
C (M, k, β) [i] = exp (βtK [kt, Mt [i]]) / ∑j exp (βtK [kt, Mt [j]])      (9.55)
Недостаток C (M, k, β) NTM, связанный с выделением только смежных блоков памяти, также преодолен в DNC. DNC определяет концепцию дифференцируемого списка свободных мест для отслеживания использования (ut) каждой ячейки памяти. Использование увеличивается после каждой записи (wwt) и опционально уменьшается после каждого чтения (wr,it) свободными воротами (fit), задаваемыми:
ut = (ut−1 + wwt−1 −ut−1 ◦ wwt−1) ◦ ∏Ri = 1 (1 − fitwr,it)                           (9.56)
Контроллер использует шлюз распределения (gat ∈ [0,1]) для интерполяции между записью в новое выделенное место в памяти (at) или существующее местоположение, найденное по содержимому (cwt), где gwt ∈ [0,1] является ворота записи:
wwt = gwt [(gat at + (1 − gat) cwt)]                                                      (9.57)
Еще одним недостатком NTM была невозможность извлечения воспоминаний с сохранением временного порядка, что очень важно для многих задач. DNC преодолевает это, имея возможность перебирать воспоминания в том порядке, в котором они были написаны. Взвешивание приоритета (pt) отслеживает, в какие ячейки памяти были записаны самые последние, используя:
pt = (1 − ∑iwwt [i]) pt−1 + wwt                                                          (9.58)
Матрица временной связи (Lt [i, j] ∈ RN × N) представляет степень, в которой местоположение i было местоположением после местоположения j. Матрица обновляется с использованием вектора веса приоритета pt, как задано:
Lt [i, j] = (1 − wwt [i] −wwt [j]) Lt−1 [i, j] + wwt [i] pt−1 [j]               (9.59)
Контроллер может использовать матрицу временных связей для извлечения записи до (бит) или после (подгонки) последнего места чтения (wr, it-1), позволяя движение вперед и назад во времени, заданное следующими уравнениями:
bit = LtT wr,i t−1                                                                                  (9.60)
fit = Ltwr,it−1                                                                                      (9.61)
В документе матрица временных связей имеет размер N × N, и, следовательно, операция, связанная с памятью и вычислениями, имеет порядок O (N2). Поскольку матрица разреженная, авторы аппроксимировали ее, используя фиксированную длину K, чтобы аппроксимировать векторы wˆWt, pˆt−1 для веса записи и веса приоритета. Это в дальнейшем используется для вычисления приблизительной матрицы временных связей Lˆt и, таким образом, нового прямого и обратного движения fˆit и bˆit, соответственно. Они увидели более высокую производительность без какого-либо заметного снижения эффективности, используя приблизительный метод.
Считывающая головка i вычисляет вектор веса содержимого cr, используя ключ чтения kr, используя:
cr,it = C (Mt, kr,it, βr,it)                                                                  (9.62)
Считывающая головка получает входные данные от трехходовых вентилей (πit) и использует их для интерполяции между итерациями вперед, назад или по содержимому, заданному следующим образом:
wr,it = πit [1]bit + πit [2] cr,it + πit [2]fit                                          (9.63)
9.3.5. Сети с динамической памятью
Kumar et al. предложенные сети динамической памяти (DMN), в которых многие задачи в NLP могут быть сформулированы как тройка фактов – вопросов – ответов, а сквозное обучение может происходить эффективно [Кум + 16]. Мы опишем компоненты DMN, как показано на рис. 9.13. Мы будем использовать небольшой пример, приведенный на рис. 9.13, для объяснения каждого шага.
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Рис. 9.13: Сети динамической памяти (DMN)
9.3.5.1. Модуль ввода
Модуль ввода принимает истории / факты и т. д. В виде предложений в необработанной форме, преобразует их в распределенное представление, используя вложения, такие как GloVe, из модуля памяти и кодирует их с помощью повторяющейся сети, такой как GRU. Входными данными может быть отдельное предложение или список предложений, объединенных вместе - скажем, слов TI, заданных w1, ..., wTI. Каждое предложение преобразуется путем добавления токена конца предложения, а затем слова объединяются. Каждое предложение преобразуется путем добавления токена конца предложения, а затем слова объединяются. Каждый конец предложения генерирует скрытое состояние, соответствующее этому предложению, например, ht = GRU (L (wt), ht-1), где wt - индекс слова wt в момент времени t, а L - матрица вложения. Выходы этого входа - это последовательности фактов длины Tc скрытого состояния каждого предложения, а ct - это факт на шаге t. В простейшем случае, когда каждое предложение выводится как факт, Tc равно количеству предложений.
9.3.5.2. Модуль вопросов
Модуль вопросов аналогичен модулю ввода, где вопросительное предложение слов TQ преобразуется в вектор вложения и передается в рекуррентную сеть. Рекуррентная сеть на основе GRU используется для ее моделирования, задаваемого qt = GRU (L (wQt), qt−1), где L - матрица вложения. Скрытое состояние, которое является конечным состоянием в конце вопроса, было задано как q = qTQ. Матрица вложения слов L используется как для модуля ввода, так и для модуля вопросов.
9.3.5.3. Модуль памяти эпизодов
Скрытые состояния модуля ввода во всех предложениях и выходных модулях вопросов являются входами для модуля эпизодической памяти. Эпизодическая память имеет механизм внимания, позволяющий сосредоточить внимание на состояниях входных данных, и повторяющуюся сеть, которая обновляет ее эпизодическую память. Эпизодические обновления памяти являются частью итеративного процесса. На каждой итерации механизм внимания наблюдает за отображением скрытых состояний входного модуля в представление факта c, вопрос q и прошлое воспоминание mi-1, чтобы произвести эпизод ei. Затем эпизод используется вместе с предыдущим воспоминанием mi-1 для обновления эпизодического воспоминания mi = GRU (ei, mi-1). GRU инициализируется с вопросом в качестве состояния, то есть m0 = q. Итеративный характер эпизодической памяти помогает сосредоточить внимание на различных частях входных данных и, таким образом, имеет транзитивный характер, необходимый для вывода. Количество проходов TM - это гиперпараметр, и последнее эпизодическое воспоминание mTM передается модулю ответов.
Механизм внимания имеет часть создания признаков и часть оценки, использующую механизм стробирования. Стробирование происходит через функцию G, которая принимает в качестве входных данных факт кандидата ct, предыдущую память mi−1 и вопрос q для вычисления скаляра gt, который действует как вентиль:
git = G (ct, mi−1, q)                                                                          (9.64)
Вектор признаков z (c, m, q), который передается в функцию оценки G выше, используя различное сходство между входными фактами, предыдущей памятью и вопросом, как задано:
z (c, m, q) = [c ◦ m; c ◦ q; | c− m |; c − m]                                     (9.65)
где ◦ - поэлементное произведение векторов. Функция оценки G представляет собой стандартную двухуровневую сеть прямой связи, где
G (c, m, q) = σ (W(2) tanh (W(1) z (c, m, q) + b1) + b2)                  (9.66)

где веса W(1), W(2) и смещения b1, b2 изучаются в процессе обучения.
В эпизоде ​​на итерации i используется GRU с последовательностями c1, ..., cTC, взвешенными с помощью ворот gi, а окончательное скрытое состояние используется для обновления, как указано:
hit = gitGRU(ct, hit−1,) + (1−git) hit−1                                                 (9.67)
ei = hiTC                                                                                            (9.68)

Либо устанавливается максимальная итерация, либо передается контролируемый символ, обозначающий конец фазы, чтобы остановить итерацию.
9.3.5.4. Ответный модуль
Модуль ответов может запускаться в конце каждой итерации эпизодической памяти или последней в зависимости от задачи. Он снова моделируется как GRU с входным вопросом, последним скрытым состоянием at-1 и предыдущим предсказанием yt-1. Начальное состояние a0 инициализируется последней памятью как a0 = mTM. Таким образом, обновления можно записать как:
yt = softmax(Waat)                                                                            (9.69)
at = GRU([yt−1, q], at−1)                                                                     (9.70)

9.3.5.5. Обучение
Сквозное обучение выполняется под контролем, когда ответ, сгенерированный модулем ответов, сравнивается с реальным помеченным ответом, а потеря кросс-энтропии распространяется обратно с использованием стохастического градиентного спуска. Чтобы дать конкретный пример, давайте рассмотрим историю с предложениями s1, ..., s6 в качестве входных данных для модуля ввода и вопросом q: Где футбол? для передачи в модуль вопросов, как показано на рис. 9.13. При первом проходе эпизодической памяти предположим, что он попытается учесть слово футбол из вопроса, все факты будут приходить в виде скрытых состояний из модулей ввода и будут оценивать все факты из ввода, в котором появляется футбол, и давать максимум к таким фактам, как Мэри получила там футбол. В следующей итерации он возьмет результат этого эпизодического состояния и попытается сосредоточиться на следующей части, Мэри и, таким образом, выберет все утверждения, такие как Мэри перешла в ванную комнату, Мэри достала мяч, Мэри вернулась на кухню и Мэри вернулась в сад. Предположим, из них он выберет последнее предложение, которое Мэри вернулась в сад. Выбор правильных предложений для фокусировки происходит непрерывным образом с использованием обратного распространения ошибки, когда фактическая метка из сада модуля ответов сравнивает сгенерированный вывод для распространения ошибок обратно.
9.3.6. Нейронный стек, очереди и удаления из очереди
Grefenstette et al. изучили обучающее взаимодействие между контроллером и памятью, используя традиционные структуры данных, такие как стеки, очереди и двухсторонние очереди. Они дают более высокий уровень обобщения по сравнению с RNN [Gre + 15]. В следующих нескольких разделах мы исследуем основы работы архитектуры нейронного стека, а затем обобщим ее на другие стеки.
9.3.6.1. Нейронный стек
Нейронный стек - это дифференцируемая структура, которая позволяет сохранять векторы с помощью операций push и извлекать векторы с помощью операций pop, аналогичных структуре данных стека, как показано на рис. 9.14.
Все содержимое стека в данный момент времени t обозначается матрицей Vt, каждая строка, соответствующая адресу памяти i, содержит вектор vt размера m, так что он находится в пространстве Rm. С каждым индексом в матрице связан вектор силы, задающий вес, связанный с этим индексом содержания, и задается st. Сигнал push задается скаляром dt ∈ (0,1), а сигнал pop задается скаляром ut ∈ (0,1). Значение, считываемое из стека, определяется как rt ∈ Rm.
Необходимые операции для нейронного стека задаются следующими тремя уравнениями для Vt, st и rt:
Vt [i] = Vt−1 [i], если 1 ≤ i <t
   vt, если i = t, Vt [i] = vt для всех i ≤ t                                (9.71)

Уравнение 9.71 фиксирует обновления стека как постоянно растущую структуру нейронного стека в виде списка, где каждый старый индекс получает значение с предыдущего временного шага, а новый вектор помещается наверх:
st [i] = {max (0, st − 1[i] −max (0, ut - ∑t−1j = i + 1st − 1[j])), если 1 ≤ i <t, 
            {dt   если i = t                                                          (9,72)
Уравнение 9.72 фиксирует обновления весов, где случай i = t означает, что мы напрямую передаем вес push dt ∈ (0,1). Удаление записи из стека не удаляет ее физически, но устанавливает значение силы на индексе 0. Каждая из сильных сторон ниже по стеку изменяется на основе следующего вычисления, вычтите силу сигнала всплеска ut и относительная сумма выше этого индекса i + 1 и ниже индекса при значении t −1 и ограничить ее, найдя максимум между этим значением и 0. Затем вычтите ее текущим значением в индексе st + 1 и ограничьте ее, найдя максимум между этим значением и 0.
Мы смотрим на рис. 9.14 в момент времени t = 3 и наименьший индекс i = 1, предполагая, что a с предыдущим значением 0,7, он станет max (0,0,7 − max (0,0,9−0,5)) = 0,3. Точно так же мы можем подставить то же значение для t = 3 и следующего индекса i = 2 с предыдущим значением 0,7, оно станет max (0,0.9 − max (0,0.9−0)) = 0. Наконец, при t = 3 верхний индекс i = 3 будет иметь значение dt 0,9:
rt = ∑ti = 1min (st [i], max (0,1 − ∑tj = i+1 st [j] · Vt [i]))            (9.73)
Уравнение 9.73 можно рассматривать как состояние, которое сеть видит в момент времени t. Это комбинация вектора индекса и его силы, при этом сила ограничена суммой 1.
Опять же, когда мы смотрим на рис. 9.14 в момент времени t = 3, мы видим, что все является нормальными комбинациями, за исключением того, что сила индекса 1 изменена с 0,3 на 0,1, поскольку при подстановке мы получаем min (0,3, max (0,1-0,9)) = 0,1.
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Рис. 9.14: Состояния нейронного стека в зависимости от времени и операций push и pop
9.3.6.2. Рекуррентные сети, контроллер и обучение
Постепенное расширение нейронного стека сверху в виде рекуррентной сети и действия контроллера показаны на рис. 9.15а, б. Вся архитектура, отмеченная пунктирными линиями, представляет собой рекуррентную сеть с входами: (а) предыдущее повторяющееся состояние Ht-1 и (б) текущее входное состояние; и выводит (a) следующее повторяющееся состояние Ht и (b) ot. Предыдущее рекуррентное состояние Ht − 1 состоит из трех частей: (a) вектор предыдущего состояния из RNN ht − 1, (b) предыдущее чтение стека rt, и (c) состояние стека из предыдущего состояния (Vt − 1, st). В реализации все векторы, кроме h0, который инициализируется случайным образом, для начала устанавливаются в 0.
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Рис. 9.15: Нейронный стек с рекуррентной сетью и контроллером. (а) Нейронный стек как рекуррентная сеть. (б) Рекуррентная сеть нейронного стека с контроллером
Текущий ввод объединяется с предыдущим считыванием стека rt-1 в контроллер, который имеет свое собственное предыдущее состояние ht-1, генерирующее следующее состояние ht и вывод ot. Результатом вывода ot является скаляр dt push-сигнала, скаляр ut pop-сигнала и вектор vt значений, которые поступают в качестве входных сигналов в нейронный стек и выходного сигнала ot для всего. Уравнения следующие:
dt = sigmoid( (Wdot + bd)                                               (9,74)
ut = sigmoid (Wuot + bu)                                                (9,75)
vt = sigmoid (Wvot + bv)                                                (9,76)
ot = sigmoid (Woot + bo)                                                (9,77)

Всю структуру можно легко адаптировать к нейронным очередям, изменив сигнал pop на чтение снизу списка, а не сверху, и его можно записать как:
st [i] = {max (0, st−1[i] − max (0, ut - ∑i−1j=1 st−1[j])), если 1 ≤ i <t
                     {dt,                                             если i = t                 (9,78)
rt = ∑ti=1 min (st[i], max (0,1 − ∑i−1j=1 st[j] · Vt [i]                 (9.79)
Neural DeQue работает аналогично нейронному стеку, но имеет возможность принимать входные сигналы push, pop и value как для верхней, так и для нижней сторон списка.
9.3.7. Рекуррентные сети сущностей
Henaff et al. разработал высокопараллельную архитектуру с длинной динамической памятью, которая хорошо справляется со многими задачами NLU, известными как сети рекуррентных сущностей (EntNet) [Hen + 16]. Идея состоит в том, чтобы иметь блоки ячеек памяти, где каждая ячейка может хранить информацию о сущности в предложении, чтобы многие сущности, соответствующие именам, местоположениям и другим, имели информационное содержимое в ячейках. Мы обсудим основные компоненты EntNet на рис. 9.16.
9.3.7.1. Входной энкодер
Давайте рассмотрим конкретно вопросно-ответную систему с предложениями, обсуждающими интересующую тему, где и вопрос, и ответ находятся в данных предложениях, хотя это можно использовать для многих других задач. Рассмотрим установку с обучающей выборкой как {(xi, yi)ni=1}, xi - входные предложения, q - вопрос, а yi - ответ из одного слова. Слой входного кодирования преобразует последовательность слов в вектор фиксированной длины. Это можно сделать, как описывают авторы, используя представление BOW и конечные состояния RNN. Они выбрали простое представление, заданное с помощью набора векторов {f1, ..., fk} с входными вложениями слов {e1, ..., ek} для данного входа в данный момент времени t:
st = ∑ifi ◦ ei                                                                   (9.80)
где ◦ - произведение Адамара или поэлементное умножение. Одинаковый набор векторов {f1, ..., fk} используется для всех временных шагов. Матрица вложения E ∈ R|V|×d преобразует каждое слово в предложении, используя E (w) = e ∈ Rd, где d - размерность вложений. Как и другие параметры, векторы {f1, ..., fk} изучаются из обучающих данных вместе с другими параметрами.
9.3.7.2. Динамическая память
Как показано на рис. 9.16b, входящие закодированные предложения перетекают в блоки ячеек памяти, и вся сеть представляет собой форму стробированного рекуррентного блока (GRU) со скрытыми состояниями в этих блоках, которые, сцепленные вместе, дают общее скрытое состояние сети. Всего блоков h1, ..., hm порядка 5–20, а в каждом блоке hj - 20–100 единиц. Каждому блоку j дано скрытое состояние hj ∈ Rd и ключ wj ∈ Rd.
Роль блока состоит в том, чтобы фиксировать информацию о сущности с фактами. Это достигается путем связывания весов ключевых векторов с вложениями интересующих сущностей, чтобы модель узнала информацию о сущностях, встречающихся в тексте. Типовой блок j с весом wj и скрытым состоянием hj задается следующим образом:
gtj ← sigmoid (stT ht−1j + stT wt−1j)    (вентиль)                   (9.81)
h˜tj ← φ (Pht−1j + Qwt−1j + Rst)    (память кандидата)        (9.82)
htj ← ht−1j + gj ◦ h˜tj            (новая память)                         (9.83)
htj ← htj htj                 (сброс памяти)                                 (9.84)

где gj - вентиль, который решает, какая часть памяти будет обновлена, φ - функция активации, такая как ReLU, htj - новая память, которая объединяет старую временную метку с текущей, а нормализация на последнем шаге помогает забыть предыдущую информацию. Матрицы P ∈ Rd×d, Q ∈ Rd×d, R ∈ Rd×d являются общими по всем блокам.
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Рис. 9.16: EntNet. (а) Единый блок в EntNet. (b) Сети рекуррентных сущностей (EntNet) с несколькими блоками
9.3.7.3. Модуль вывода и обучение
Модуль вывода, когда он представлен с вопросом q, создает распределение вероятностей по всем скрытым состояниям, и все уравнения могут быть записаны как:
pj = softmax (qТ hj)                                                         (9.85)
u = ∑jpjhj                                                                         (9.86)
у = Rφ (q + Hu)                                                              (9.87)

Матрицы R ∈ R| V |×d и H ∈ Rd×d снова обучаются с остальными параметрами. Функция φ добавляет нелинейность и может быть активацией, как ReLU.
Вся сеть обучается с использованием обратного распространения ошибки. Сущности могут быть извлечены как часть предварительной обработки, а ключевые векторы могут быть специально привязаны к встраиваемым сущностям, существующим в историях, таких как {Мэри, Сандра, Джон, ванная комната, спальня, кухня, сад, футбол} в пример bAbI.
9.3.8. Приложения сетей с расширенной памятью в тексте и речи
Большинство сетей памяти успешно применяются для сложных задач NLU, таких как ответы на вопросы и маркировка семантических ролей [WCB14, Suk + 15, Gra + 16, Hen + 16]. Сухбаатар и др. применили сквозные сети памяти, чтобы превзойти традиционные RNN, увеличив количество скачков памяти в задаче языкового моделирования [Suk + 15]. Kumar et al. интересно преобразовали большинство задач НЛП из синтаксических в семантические задачи в структуре вопросов и ответов и успешно применили сети динамической памяти [Кум + 16]. Grefenstette et al. продемонстрировали значительный прирост производительности, полученный с использованием сетей памяти, таких как нейронные стеки, очереди и двухсторонние очереди, в задачах преобразования, таких как грамматики инверсионного преобразования (ITG), используемые в машинном переводе [Gre + 15].
9.4. Пример использования
В этом разделе мы исследуем две темы НЛП: NMT на основе внимания и сети памяти для вопросов и ответов. Каждая тема построена в том же формате, что и в предыдущих главах, и в конце содержит упражнения.
9.4.1. NMT на основе внимания
В этой части тематического исследования мы сравниваем механизмы внимания при выполнении задачи перевода с английского на французский, представленной в гл. 7. Используемый набор данных состоит из пар переводов с веб-сайта Tatoeba. Это тот же набор данных, который использовался в гл. 7 тематических исследований.
9.4.2. Исследовательский анализ данных
Что касается процесса EDA, мы отсылаем читателей к Разд. 7.7.2 для шагов, которые использовались для создания разбиения набора данных.
Сводка набора данных показана ниже.
1 размер тренировочного набора: 107885
2 Размер набора для валидации: 13486
3 Размер набора для тестирования: 13486
4 Объем английского словарного запаса: 4755
5 Объем французского словарного запаса: 6450

9.4.2.1. Программные инструменты и библиотеки
Когда мы впервые исследовали нейронный машинный перевод, мы использовали библиотеку fairseq, которая использует PyTorch. Насколько нам известно, не существует единой библиотеки, которая поддерживала бы все различные механизмы внимания. Поэтому мы объединяем коллекцию библиотек, чтобы сравнить подходы к вниманию. В частности, мы используем PyTorch как фреймворк глубокого обучения, AllenNLP для большинства реализаций механизма внимания, spaCy для токенизации и torchtext для загрузчика данных. Приведенный здесь код расширяет некоторые из исходных работ в учебных пособиях PyTorch с помощью дополнительных функций и сравнений.
9.4.2.2. Обучение модели
Мы сравниваем пять различных механизмов внимания, тренировок на 100 эпох. Для каждого механизма внимания модель, которая лучше всего работает с данными проверки, выбирается для запуска на данных тестирования. Обучаемые модели представляют собой четырехуровневые двунаправленные кодеры GRU с одним однонаправленным декодером GRU. Кодер и декодер имеют скрытый размер 512, а вложения кодирования и декодирования имеют размер 256. Модели обучаются с кросс-энтропийной потерей и SGD с размером пакета 512. Начальная скорость обучения составляет 0,01 для кодировщика и 0,05 для декодера, и импульс применяется к обоим со значением 0,9. График скорости обучения используется для уменьшения скорости обучения, когда потери при проверке не улучшаются в течение 5 эпох.
Чтобы упорядочить нашу модель, мы добавляем выпадение как для кодировщика, так и для декодера с вероятностью 0,1, а нормы градиентов обрезаются до 10.
Мы включаем пакетную реализацию модели, чтобы использовать параллельное вычисление графических процессоров. Архитектура одинакова для всех моделей, за исключением модели Бахданау, которая требовала введения весовой матрицы для двунаправленного вывода кодера в механизме внимания.
Мы определяем различные компоненты наших сетей следующим образом:
1 class Encoder ( nn . Module ) :
2 def init ( self , input dim , emb dim , enc hid dim ,
dec hid dim,
3 dropout , num layers =1, bidirectional=False ) :
4 super () . init ( )
5 self . input dim = input dim
6 self . emb dim = emb dim
7 self . enc hid dim = enc hid dim
8 self . dec hid dim = dec hid dim
9 self . num layers = num layers
10 self . bidirectional = bidirectional
11
12 self . embedding = nn . Embedding ( input dim , emb dim )
13 s e l f . rnn = nn .GRU( emb dim , enc hid dim , num layers=
num layers , bidirectional=bidirectional )
14 self . dropout = nn . Dropout ( dr opout )
15 if bidirectional :
16 sel f . fc = nn . Linear ( enc hid dim ∗ 2, dec hid dim )
17
18 def forward ( self , src ) :
19 embedded = self . dropout ( self . embedding ( src ) )
20 outputs , hidden = self . rnn ( embedded )
21
22 if self . bidirectional :
23 hidden = torch . tanh ( self . fc ( torch . cat (( hidden [ −2 ,: ,:] ,
hidden [ − 1 ,: ,:]) , dim=1) ) )
24
25 if not self . bidirectional and self . num layers > 1 :
26 hidden = hidden [ −1 ,: ,:]
27
28 return outputs , hidden
1 class Decoder ( nn . Module ) :
2 def init ( self , output dim , emb dim , enc hid dim ,
dec hid dim , dropout ,
3 attention , bidirectional input=False ) :
4 super () . init ( )
5 self . emb dim = emb dim
6 self . enc hid dim = enc hid dim
7 self . dec hid dim = dec hid dim
8 self . output dim = output dim
9 self . dropout = dropout
10 self . attention = attention
11 self . bidirectional input = bidirectional input
12
13 self . embedding = nn . Embedding ( output dim , emb dim )
14
15 if bidirectional input :
16 s e l f . rnn = nn .GRU( ( e n c hid dim ∗ 2) + emb dim ,
dec hid dim )
17 sel f . out = nn . Linear (( enc hid dim ∗ 2) + dec hid dim +
emb dim , output dim )
18 else :
19 s e l f . rnn = nn .GRU( ( e n c hid dim ) + emb dim , dec hid dim
)
20 sel f . out = nn . Linear (( enc hid dim ) + dec hid dim +
emb dim , output dim)
	21
22 self . dropout = nn . Dropout ( dr opout )
23
24 def forward ( self , input , hidden , encoder outputs ) :
25 input = input . unsqueeze (0)
26 embedded = self . dropout ( self . embedding ( i nput ))
27 hidden = hidden . squeeze (0) if len ( hidden . size () ) > 2 else
hidden # batch s i z e =1 issue
28
29 # Repeat hidden s t a t e for attention on b i d i r e c t i o n a l
outputs
30 if hidden . size(−1) != encoder outputs . size(−1) :
31 attn = self . attention ( hidden . repeat (1 , 2) ,
encoder outputs . permute (1 , 0, 2) )
32 else :
33 attn = self . attention ( hidden , encoder outputs . permute
(1 , 0, 2) )
34
35 a = attn . unsqueeze (1)
36
37 encoder outputs = encoder outputs . permute (1 , 0, 2)
38
39 w e i g h t e d = t o r c h .bmm( a , e n c o d e r outputs )
40 weighted = weighted . permute (1 , 0, 2)
41
42 rnn input = torch . cat (( embedded , weighted ) , dim=2)
43
44 output , hidden = self . rnn ( rnn input , hidden . unsqueeze (0) )
45
46 embedded = embedded . squeeze (0)
47 output = output . squeeze (0)
48 weighted = weighted . squeeze (0)
49
50 output = self . out ( torch . cat (( output , weighted , embedded ) ,
dim=1) )
51
52 return output , hidden . squeeze (0) , attn

1 class Seq2Seq ( nn . Module ) :
2 def init ( self , encoder , decoder , device ) :
3 super () . init ( )
4 self . encoder = encoder
5 self . decoder = decoder
6 self . device = device
7
8 def forward ( self , src , trg , teacher forcing ratio =0.5) :
9 batch size = src . shape [1]
10 max len = trg . shape [0]
11 trg vocab size = self . decoder . output dim
12
13 outputs = torch . zeros ( max len , batch size , trg vocab size )
. to ( self . device )
14
15 encoder outputs , hidden = self . encoder ( src )
16 hidden = hidden . squeeze (1)
17
18 output = trg [0 ,:] # first input to decoder <sos>
19
20 for t in range (1 , max len ) :
21 output , hidden , attn = self . decoder ( output , hidden ,
encoder outputs )
22 outputs [ t ] = output
23 teacher force = random . random () < teacher forcing ratio
24 top1 = o u t p u t . max ( 1 ) [ 1 ]
25 output = ( trg [ t ] if teacher force else top1 )
26
27 return outputs

Мы используем реализации внимания от AllenNLP для скалярного произведения, косинуса и билинейного внимания. Эти функции принимают скрытое состояние декодера и выходные данные кодировщика и возвращают отслеживаемые оценки.
1 from allennlp . modules . attention import LinearAttention ,
2 CosineAttention ,
3 BilinearAttention ,
4 DotProductAttention
5
6 attn = DotProductAttention () # Changed for each type of model
7 enc = Encoder ( INPUT DIM ,
8 ENC EMB DIM ,
9 ENC HID DIM ,
10 DEC HID DIM ,
11 ENC DROPOUT,
12 num l a y e r s =ENC NUM LAYERS,
13 b i d i r e c t i o n a l =ENC BIDIRECTIONAL )
14 dec = Decoder (OUTPUT DIM ,
15 DEC EMB DIM ,
16 ENC HID DIM ,
17 DEC HID DIM ,
18 DEC DROPOUT,
19 attn ,
20 bidirectional i n p u t =ENC BIDIRECTIONAL )
21
22 model = Seq2Seq ( enc , dec , device ) . to ( device )

На рис. 9.17 и 9.18 показаны тренировочные графики потери и PPL соответственно для каждой из моделей внимания. Три метода, которые работают лучше всего, - это модели Bahdanau, точечное произведение и билинейные модели. Косинус и линейное внимание пытаются сойтись. Механизм внимания в линейном внимании определенно не коррелирует вообще с входной последовательностью.
На рис. 9.19, 9.20, 9.21, 9.22 и 9.23 мы приводим несколько примеров декодированных выходов внимания для трех разных файлов, показывая, что декодер принимает во внимание во время процесса перевода. На каждом из рисунков первые два графика (а) и (б) представляют собой входные данные с длиной 10, максимальной, наблюдаемой моделями во время обучения. В большинстве случаев внимание по-прежнему совпадает с вводом; однако прогнозы в основном неверны, обычно с высокой энтропией вблизи временных шагов, близких к максимальной длине обучающей последовательности.
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Рис. 9.17: (а) потери при обучении и (б) при проверке для каждой модели внимания
9.4.2.3. Внимание Бахданау
Внимание Bahdanau использует полностью связанный уровень для объединения связанных выходных данных двунаправленного слоя, а не для дублирования скрытого состояния.
Включение этого требует небольших изменений, чтобы учесть изменения в размерах тензора.
1 class BahdanauEncoder ( nn . Module ) :
2 def init ( self , input dim , emb dim , enc hid dim ,
dec hid dim , dropout ) :
3 super () . init ( )
	4
5 self . input dim = input dim
6 self . emb dim = emb dim
7 self . enc hid dim = enc hid dim
8 self . dec hid dim = dec hid dim
9 self . dropout = dropout
10
11 self . embedding = nn . Embedding ( input dim , emb dim )
12 s e l f . rnn = nn .GRU( emb dim , enc hid dim , num layers =4,
bidirectional=True )
13 se lf . fc = nn . Linear ( enc hid dim ∗ 2, dec hid dim )
14 self . dropout = nn . Dropout ( dr opout )

[image: ] [image: ]

Рис. 9.18: (а) обучение и (б) валидация PPL для каждой модели внимания
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Рис. 9.19: Примеры точечных продуктов
[image: ][image: ]
Рис. 9.20: Примеры косинусного внимания
15
16 def forward ( self , src ) :
17 embedded = self . dropout ( self . embedding ( src ) )
18 outputs , hidden = self . rnn ( embedded )
19 hidden = torch . tanh ( self . fc ( torch . cat (( hidden [ −2 ,: ,:] ,
hidden [ − 1 ,: ,:]) , dim=1) ) )
20 return outputs , hidden

В декодер вносятся незначительные изменения, чтобы справиться с разницей между скрытым размером и выводом кодировщика.
1 class BahdanauAttention ( nn . Module ) :
2 def init ( self , enc hid dim , dec hid dim ) :
3 super () . init ( )
4
5 self . enc hid dim = enc hid dim
6 self . dec hid dim = dec hid dim
7
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Рис. 9.21: Примеры билинейного внимания
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Рис. 9.22: Примеры линейного внимания. Обратите внимание на то, как модель не смогла изучить полезное отображение с помощью механизма внимания, но все еще могла переводить некоторые примеры.
8 self . attn = nn . Linear (( enc hid dim ∗ 2) + dec hid dim ,
dec hid dim )
9 self . v = nn . Parameter ( torch . rand ( dec hid dim ) )
10
11 def forward ( self , hidden , encoder outputs ) :
12 batch size = encoder outputs . shape [1]
13 src len = encoder outputs . shape [0]
14
15 hidden = hidden . unsqueeze (1) . repeat (1 , src len , 1)
16
17 encoder outputs = encoder outputs . permute (1 , 0, 2)
18
19 energy = torch . tanh ( self . attn ( torch . cat (( hidden ,
encoder outputs ) , dim=2) ) )
20 energy = energy . permute (0 , 2, 1)
21
22 v = self .v. repeat ( batch size , 1) . unsqueeze (1)
23
24 a t t e n t i o n = t o r c h .bmm( v , e n e r g y ) . s q u e e z e ( 1 )
25 return F . softmax ( attention , dim=1)
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Рис. 9.23: Примеры внимания Bahdanau
9.4.2.4. Результаты
Модель с наилучшими характеристиками для каждого из механизмов внимания была запущена на тестовой выборке и дала следующие результаты в таблице 9.2.
Таблица 9.2: Результаты тестирования моделей внимания. Лучшие результаты выделены жирным шрифтом
Attention type Loss PPL
Dot 17.826 2.881
Bilinear 13.987 2.638
Cosine 22.098 3.095
Linear 17.918 2.886
Bahdanau 17.580 2.867

Лучше всего в этом эксперименте проявило себя билинейное внимание. Из выравнивания внимания на рис. 9.21 видно, что выход внимания сильно коррелирует с входом. Более того, сила внимания очень надежна на протяжении всей последовательности предсказаний, даже немного теряя уверенность к концу последовательности. 
9.4.3. Вопросы и ответы.
Чтобы помочь читателю познакомиться с сетями внимания и памяти, мы применим концепции этой главы к задаче ответа на вопросы с набором данных bAbI. bAbI - это набор из 20 простых задач QA с ограниченным словарным запасом. Для каждого задания есть набор из 1000 обучающих и 1000 историй, тестовых вопросов и ответов, а также расширенный обучающий набор из 10 000 образцов. Несмотря на свою простоту, bAbI эффективно улавливает сложности с памятью и дальнодействующие зависимости при ответе на вопросы. В этом тематическом исследовании мы сосредоточимся на задачах 1–3, состоящих из вопросов, где до трех подтверждающих фактов из историй предоставляют информацию, подтверждающую ответ.
9.4.3.1. Программные инструменты и библиотеки
Для этого примера мы реализуем несколько архитектур с Keras и TensorFlow. Keras предоставляет полезный пример повторяющейся архитектуры нейронной сети для задачи с ответами на вопросы, которая будет служить нашей базой. Мы будем сравнивать производительность с несколькими сетевыми архитектурами с памятью, обсуждаемыми в этой главе, включая дифференцируемую нейронную компьютерную модель от DeepMind. Вместо того, чтобы полностью описывать здесь каждую архитектуру, мы направляем читателя к записным книжкам, сопровождающим эту главу, для получения полной информации о реализации.
9.4.3.2. Исследовательский анализ данных
Нашим первым шагом является загрузка набора данных bAbI и извлечение обучающего и тестового наборов для нашего анализа. Мы сосредоточимся на расширенном наборе данных с 10 000 обучающих образцов и 1000 тестовых образцов. Давайте сначала взглянем на примеры для задач QA1, QA2 и QA3:
История QA1: Мэри перешла в ванную. Джон вышел в коридор.
Вопрос QA1: Где Мэри?
QA1 Ответ: В ванной

QA2 История: Мэри перешла в ванную. Сандра отправилась в спальню. Мэри получила там футбольный мяч. Джон пошел на кухню. Мэри вернулась на кухню.
Мэри вернулась в сад.
QA2 Query: Где футбольный мяч?
QA2 Ответ: В саду

QA3 История: Мэри перешла в ванную. Сандра отправилась в спальню. Мэри получила там футбол. Джон вернулся в спальню. Мэри отправилась в офис. Джон отправился в офис. Джон взял молоко. Дэниел вернулся на кухню. Джон перешел в спальню. Дэниел вернулся в коридор. Даниэль взял яблоко. Джон оставил молоко там. Джон отправился на кухню. Сандра вернулась в ванную. Дэниел отправился в ванную комнату. Джон пошел в ванную. Мэри пошла в ванную. Сандра вернулась в сад. Сандра пошла в офис. Даниил пошел в сад. Сандра вернулась в коридор. Дэниел отправился в офис. Мэри уронила мяч. Джон перешел в спальню.
Вопрос QA3: Где был футбольный мяч до туалета?
QA3 Ответ: В офисе

Анализ наборов данных показывает растущую сложность и большую память, которая требуется при переходе от задачи QA1 к QA3. Истории поездов задач тестовые истории мин. (Размер рассказа) макс. (Размер рассказа) размер запроса размер словаря
QA1 10 000 1000 12 68 4 21
QA2 10 000 1000 12 552 5 35
QA3 10,000 1000 22 1875 8 36

Распространение рассказа, увеличивая величину текста и длину вопроса (по количеству жетонов), можно увидеть на рис. 9.24.
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Рис. 9.24: Распределение длин рассказов и вопросов в заданиях bAbI 1–3
Средняя длина историй существенно увеличивается при переходе от QA1 к QA3, что значительно усложняет задачу. Помните, что для задачи QA3 есть только три подтверждающих факта, и большая часть истории считается «шумом». Мы увидим, насколько хорошо разные архитектуры смогут научиться определять соответствующие факты из этого шума.
9.4.3.3. Базовая линия LSTM
Мы используем пример архитектуры Keras LSTM в качестве основы. Эта архитектура состоит из следующего:
1. Обозначения каждой истории и вопроса сопоставлены с вложениями (которые не являются общими для них).
2. Истории и вопросы кодируются с использованием отдельных LSTM.
3. Закодированные векторы рассказа и вопроса объединяются.
4. Эти сцепленные векторы используются в качестве входных данных для DNN, выходом которой является softmax по словарю.
5. Вся сеть обучена минимизировать ошибку между выходом softmax и ответом.
Модель Keras, реализующая эту архитектуру:
1 RNN = r e c u r r e n t .LSTM
2
3 sentence = layers . Input ( shape=( story maxlen ,) , dtype= ’int32 ’ )
4 encoded sentence = layers . Embedding ( vocab size ,
EMBED HIDDEN SIZE ) ( s e n t e n c e )
5 encoded sentence = Dropout (0.3) ( encoded sentence )
6 encoded s e n t e n c e = RNN( SENT HIDDEN SIZE ,
7 return sequences=False )( encoded sentence )
8
9 question = layers . Input ( shape=(query maxlen ,) , dtype= ’int32 ’ )
10 encoded question = layers . Embedding ( vocab size ,
EMBED HIDDEN SIZE ) ( q u e s t i o n )
11 encoded question = Dropout (0.3) ( encoded question )
12 encoded q u e s t i o n = RNN( QUERY HIDDEN SIZE ,
13 return sequences=False )( encoded question )
14
15 merged = layers . concatenate ([ encoded sentence , encoded question
] )
16 merged = Dropout (0.3) ( merged )
17 preds = layers . Dense ( vocab size , activation= ’softmax ’ ) ( merged )
18
19 model = Model ([ sentence , question ] , preds )
20 model . compile ( optimizer= ’adam ’ ,loss= ’categorical crossentropy ’, metrics =[ ’accuracy ’ ] )

Мы обучаем эту модель с использованием расширенных обучающих наборов bAbI с встраиванием 50-мерного изображения, 100-мерным кодированием, размером пакета 32 и оптимизатором Adam для 100 эпох. Производительность по задачам QA1, QA2 и QA3 приведена в таблице 9.3.
Таблица 9.3: Базовые результаты производительности LSTM, чем длиннее истории, тем хуже производительность модели LSTM из-за увеличения «шума» в данных.
Задача Тестовая точность набора
QA1 0,51
QA2 0,31
QA3 0,17
Как видно из результатов, чем длиннее истории, тем хуже производительность модели LSTM из-за увеличения «шума» в данных.
9.4.3.4. Сквозная сеть памяти
Сети памяти предоставляют возможность хранить долгосрочную информацию и тем самым повышать производительность, особенно в более длинных последовательностях, таких как задача QA3. Сети памяти могут хранить подтверждающие факты в виде векторов памяти, которые запрашиваются и используются для предсказания. В исходной форме, разработанной Вестоном, векторы памяти изучаются посредством прямого надзора с пристальным вниманием, и надзор требуется на каждом уровне сети. Это требует значительных усилий. Чтобы преодолеть эту потребность, сквозные сети памяти, предложенные Сухэ-Батором, используют мягкое внимание вместо контроля, которому можно научиться во время обучения с помощью обратного распространения. Эта сквозная архитектура делает следующие шаги:
1. Каждое предложение рассказа и запрос отображаются на отдельные представления встраивания.
2. Встраивание запроса сравнивается с встраиванием каждого предложения в память, и функция softmax используется для генерации распределения вероятностей, аналогичных механизму мягкого внимания.
3. Эти вероятности используются для выбора наиболее релевантного предложения в памяти с помощью отдельного набора вложений предложений.
4. Результирующий вектор объединяется с внедрением запроса и используется в качестве входных данных для слоя LSTM, за которым следует плотный слой с выходом softmax.
5. Вся сеть обучена минимизировать ошибку между выходом softmax и ответом.
Обратите внимание, что это называется однослойным или однослойным MemN2N, поскольку мы запрашиваем память только один раз. Как описано ранее, уровни памяти могут быть объединены для повышения производительности, особенно когда важны несколько фактов, которые необходимы для предсказания ответа. Реализация архитектуры Keras приведена ниже.
1 input sequence = Input (( story maxlen ,) )
2 input encoded m = Embedding ( input dim=vocab size ,
3 output d i m =EMBED HIDDEN SIZE ) (
input sequence )
4 input encoded m = Dropout (0.3) ( i nput encoded m )
5
6 input encoded c = Embedding ( input dim=vocab size ,
7 output dim=query maxlen ) (
input sequence )
8 input encoded c = Dropout (0.3) ( input encoded c )
9
10 question = Input (( query maxlen ,) )
11 question encoded = Embedding ( input dim=vocab size ,
12 output d i m =EMBED HIDDEN SIZE ,
13 input length=query maxlen ) (
question )
14 question encoded = Dropout (0.3) ( question encoded )
15
16 match = dot ([ input encoded m , question encoded ] , axes =(2 , 2) )
17 match = Activation ( ’softmax ’ ) ( match )
18
19 response = add ( [ match , input encoded c ])
20 response = Permute ((2 , 1) ) ( response )
21
22 answer = concatenate ([ response , question encoded ])
23 answer = LSTM( BATCH SIZE ) ( answer )
24 answer = Dropout (0.3) ( answer )
25 answer = Dense ( vocab size ) ( answer )
26 answer = Activation ( ’softmax ’ ) ( answer )
27
28 model = Model ([ i nput sequence , question ] , answer )
29 model . compile ( optimizer= ’adam ’ , loss= ’
sparse categorical crossentropy ’ ,
30 metrics =[ ’accuracy ’ ] )

Мы обучаем эту однослойную модель, используя расширенные обучающие наборы bAbI с 50-dim embedding, размер пакета 32 и оптимизатор adam на 100 эпох. Производительность по задачам QA1, QA2 и QA3 приведена в таблице 9.4.
Таблица 9.4: Производительность сети сквозной памяти
Точность задания (20 эпох) Точность (100 эпох)
QA1 0,53 0,92
QA2 0,39 0,35
QA3 0,15 0,21

По сравнению с базовым LSTM, модель MemN2N значительно лучше справилась со всеми тремя задачами, особенно с QA1. 
9.4.4. Сеть с динамической памятью
Как обсуждалось ранее, сети с динамической памятью продвигают сети памяти на один шаг вперед и кодируют память с использованием уровня GRU. Слой эпизодической памяти является ключом к сетям динамической памяти с его механизмами внимания для генерации признаков и оценки. Эпизодическая память состоит из двух вложенных GRU, где внутреннее GRU генерирует эпизоды, а внешнее GRU генерирует вектор памяти из последовательности эпизодов. DMN выполняет следующие шаги:
1. Входящие предложения рассказа и запрос кодируются с помощью ГРУ и передаются в модуль эпизодической памяти.
2. Эпизоды генерируются путем обработки этих кодировок для формирования памяти, так что кодировки предложений с низким уровнем внимания игнорируются.
3. Эпизоды вместе с предыдущими состояниями памяти используются для обновления эпизодической памяти.
4. Состояния запроса и памяти служат входными данными для GRU в модуле ответа, который используется для прогнозирования выходных данных.
5. Вся сеть обучена минимизировать ошибку между выводом ГРУ и ответом.
Ниже представлена ​​реализация TensorFlow модуля эпизодической памяти для сети динамической памяти. Обратите внимание, что EpisodicMemoryModule зависит от реализации GRU с мягким вниманием, которая включена в код тематического исследования.
1 class EpisodicMemoryModule ( Layer ) :
2
3 # attention network
4 self . l 1 = Dense ( units =emb dim , batch size=batch size ,
activation= ’tanh ’ )
5 self . l 2 = Dense ( units =1, batch size=batch size ,
a c t i v a t i o n =None )
6
7 # Episode network
8 self . episode GRU = SoftAttnGRU ( units=units ,
9 return sequences=False ,
10 batch size=batch size )
11
12 # Memory g e n e r a t i n g network
13 self . memory net = Dense ( units=units , activation= ’relu ’ )
14
15 for step in range ( self . memory steps ) :
16 attentions = [ tf . squeeze (
17 compute attention ( fact , question , memory ) ,
axis =1)
18 for i , fact in enumerate ( fact list )]
19 attentions = tf . stack ( attentions )
20 attentions = tf . transpose ( attentions )
21 a t t e n t i o n s = t f . nn . softmax ( a t t e n t i o n s )
22 attentions = tf . expand dims ( attentions , axis=−1)
24 episode = K. concatenate ([ facts , attentions ] , axis
=2)
25 episode = self . episode GRU ( episode )
26
27 memory = s e l f . memory net (K. concatenate ( [ memory ,
episode , question ] , axis =1) )
28
29 return K. concatenate ( [ memory , question ] , axis =1)

Мы обучаем модель DMN с использованием расширенных обучающих наборов bAbI с 50-мерными встраиваемыми перчатками, размером пакета 50, 100 скрытых единиц, 3 шага памяти и оптимизатором adam всего за 20 эпох. Производительность по задачам QA1, QA2 и QA3 приведена в таблице 9.5. По сравнению с более ранними архитектурами мы видим, что динамический
Таблица 9.5: Производительность сети с динамической памятью
Задача Тестовая точность набора
QA1 1.00
QA2 0,47
QA3 0,29

Сети с памятью работают лучше, чем сети MemN2N и LSTM для всех трех задач, достигая идеального предсказания на задаче QA1.
9.4.4.1. Дифференцируемый нейронный компьютер
Дифференцируемый нейронный компьютер (DNC) - это нейронная сеть с независимым банком памяти. Это встроенный контроллер нейронной сети с набором предустановленных операций для хранения и управления памятью. Как расширение архитектуры нейронной машины Тьюринга, он позволяет масштабировать память без необходимости масштабирования остальной части сети.
Сердцем DNC является нейронная сеть, называемая контроллером, которая аналогична процессору в компьютере. Этот контроллер DNC может одновременно выполнять несколько операций с памятью, включая чтение и запись в несколько ячеек памяти одновременно и создание прогнозов вывода. Как и раньше, память представляет собой набор мест, каждая из которых может хранить вектор информации. Контроллер DNC может использовать программное внимание на поиск в памяти на основе содержимого каждого местоположения, или ассоциативные временные связи могут быть перемещены вперед или назад, чтобы вызвать информацию о последовательности в любом направлении. Запрошенную информацию затем можно использовать для прогнозирования.
Для заданного входа на каждом временном шаге контроллер DNC выводит четыре вектора: 
вектор/ы чтения: используется считывающей головкой / с для адресации ячеек памяти; 
вектор/ы стирания: используется для выборочного удаления элементов из памяти; 
вектор/ы записи: используется записывающими головками для хранения информации в памяти;
вектор/ы вывода: используется как функция для прогнозирования вывода.

В этом примере мы применим реализацию TensorFlow-DNC, разработанную DeepMind, к расширенным наборам данных bAbI. Модуль DNC для этой реализации представлен:
1 DNCState = collections . namedtuple ( ’DNCState ’ , ( ’access output ’
,
2 ’access state ’ ,
3 ’
controller state ’ ) )
4 class DNC( s n t . RNNCore ) :
5 # modules
6 self . c o n t r o l l e r = s n t .LSTM(∗ ∗ controller config )
7 self . access = access . MemoryAccess(∗ ∗ access config )
8
9 # output
10 prev access output = prev state . access output
11 prev access state = prev state . access state
12 prev controller state = prev state . controller state
13
14 batch flatten = snt . BatchFlatten ()
15 controller input = tf . concat ([ batch flatten ( inputs ) ,
16 batch flatten (
prev access output ) ] , 1)
17
18 controller output , controller state = self . controller (
controller input , prev controller state )
19
20 access output , access state = self . access (
controller output , prev access state )
21
22 output = tf . concat ([ controller output , batch flatten (
access output ) ] , 1)
23 output = snt . Linear ( output size=self . output size . as list
() [0] ,
24 name= ’output linear ’ )( output )

Мы обучаем модель DNC с использованием расширенных обучающих наборов bAbI с 50-мерными встраиваемыми перчатками, скрытым размером 256, размером памяти 256 × 64, 4 считывающими головками, 1 записывающей головкой, размером пакета 1 и оптимизатором RMSprop с отсечением градиента. на 20000 итераций. Производительность по задачам QA1, QA2 и QA3 приведена в таблице 9.6. 
Таблица 9.6: Дифференцируемая производительность нейронного компьютера
Задача Тестовая точность набора
QA1 1.00
QA2 0,67
QA3 0,55

Это возможно, неудивительно, что модель DNC превосходит все предыдущие модели, учитывая возросшую сложность. При выборе архитектуры, наиболее подходящей для данной задачи, необходимо тщательно взвесить компромисс между точностью и временем обучения. Для простых задач может потребоваться всего лишь одна реализация LSTM.
DNC с масштабируемой памятью - лучший выбор, когда для прогнозирования задач требуются комплексные знания.
9.4.4.2. Сеть с рекуррентными объектами
Сети рекуррентных сущностей (EntNets) включают в себя фиксированный банк ячеек динамической памяти, который позволяет одновременно обновлять местоположение и обновлять содержимое. Благодаря этой способности они работают очень хорошо и задают самые современные логические задачи, такие как bAbI. В отличие от DNC, который полагается на сложный центральный контроллер, EntNet по сути представляет собой набор отдельных параллельных рекуррентных запоминающих устройств с независимыми шлюзами для каждой памяти.
Архитектура EntNet состоит из кодировщика ввода, динамической памяти и слоя вывода. Он работает со следующими этапами:
1. Входные предложения рассказа и запрос отображаются на встраиваемые представления и передаются на уровень динамической памяти и выходной уровень соответственно.
2. Сгенерированы ключевые векторы с вложениями сущностей.
3. Скрытые состояния (память) набора стробированных блоков GRU в динамической памяти обновляются по входным векторам кодировщика и ключевым векторам.
4. Выходной слой применяет softmax к запросу q и скрытым состояниям ячеек памяти, чтобы сгенерировать распределение вероятностей для потенциальных ответов.
5. Вся сеть обучается минимизировать ошибку между кандидатом выходного уровня и ответом.
Архитектура ячейки динамической памяти, написанной на TensorFlow, представлена ​​ниже:
1 class DynamicMemoryCell ( t f . contrib . rnn . RNNCell ) :
2 def get gate ( self , state j , key j , inputs ) :
3 a = tf . reduce sum ( inputs ∗ state j , axis =1)
4 b = tf . reduce sum ( inputs ∗ key j , axis =1)
5 return tf . sigmoid (a + b)
6
7 def get candidate ( self , state j , key j , i n p u t s , U, V, W,
U bias ) :
8 key V = tf . matmul ( key j , V)
9 state U = tf . matmul ( state j , U) + U bias
10 inputs W = t f . matmul ( i n p u t s , W)
11 return self . activation ( state U + inputs W + key V )
12
13 def call ( self , inputs , state ) :
14 state = tf . split ( state , self . num blocks , axis =1)
15 next states = []
16 for j , state j in enumerate ( state ):
17 key j = tf . expand dims ( self . keys [ j ] , axis =0)
18 gate j = self . get gate ( state j , key j , inputs )
19 candidate j = self . get candidate ( state j ,
20 key j ,
21 inputs ,
22 U, V, W, U bias )
23 state j next = state j + tf . expand dims ( gate j ,
−1) ∗ candidate j
24 state j next norm = t f . norm ( tensor = s t a t e j next ,
25 ord= ’euclidean ’ ,
26 axis=−1,
27 keep dims=True )
28 state j next norm = tf . where ( tf . greater (
state j next norm , 0.0) ,
29 state j next norm ,
30 tf . ones like (
state j next norm ))
31 state j next = state j next / state j next norm
32 next states . append ( state j next )
33 state next = tf . concat ( next states , axis =1)
34 return state next , state next

Мы обучаем EntNet, используя расширенный обучающий набор bAbI со 100-мерными встраиваемыми изображениями, 20 блоками, размером пакета 32 и оптимизатором ADAM с отсечением градиента для 200 эпох. Производительность по задачам QA1, QA2 и QA3 приведена в таблице 9.7.
Таблица 9.7: Производительность EntNet
Задача Тестовая точность набора
QA1 1.00
QA2 0,97
QA3 0,90

Производительность нашей реализации на задачах bAbI QA1, QA2 и QA3 превосходит все предыдущие архитектуры. Обратите внимание, что при правильной настройке гиперпараметров производительность EntNet и предыдущих архитектур может быть улучшена для задач bAbI.
9.4.5. Упражнения для читателей и практиков
Читатели и практики могут рассмотреть возможность распространения тематического исследования на следующие проблемы, чтобы расширить свои знания:
1. Объем памяти и сложность могут быть ограничены при использовании одной и той же матрицы внедрения как для кодировщика, так и для декодера. Что нужно изменить, чтобы решить эту проблему?
2. Настройте и увеличьте количество эпох для базовой модели LSTM во время обучения. Помогает ли добавление отсева?
3. Добавьте второй и третий переход к сквозной сети с памятью и посмотрите, улучшится ли производительность при выполнении задач QA2 и QA3 bAbI.
4. Как ограничение размера представления памяти влияет на производительность?
5. Есть ли значительный эффект от использования другой функции оценки сходства вместо softmax в контроллере памяти сети MemN2N?
6. Изучите архитектуры в этом тематическом исследовании для задач bAbI 3-20. Превосходит ли простой базовый LSTM определенные задачи?
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